
 1

Differences between Revised Oberon and Oberon

Niklaus Wirth, 22.03.2008 / 15.7.2011

Revised Oberon (Oberon-07) is a revision of the original language Oberon as defined in
1988/1990. It is accepted by the compiler recently completed for the ARM processor. Most
changes in the language might easily be called features of a dialect. However, there are a few
that merit a stronger distinction, because they should be considered as permanent, and as
corrections of unsatisfactory properties of the original Oberon. These are the elimination of the
loop statement, function result specification, array assignments, constant parameters, and read-
only import of variables. All changes were made in the interest of regularity, simplicity,
completeness, and well-structuredness.

1. The Loop and the While statements

It had been thought that the while statement with the termination condition at its entry, and the
repeat statement with the termination condition at its end must be amended by a general and
flexible construct with termination conditions anywhere. The loop statement with its exit
statements represents, however, a break with the idea of a structured language, where properties
of a statement can be derived from those of its components. The loop statement with its
syntactically unconnected exit statements does not allow this. It has therefore been deleted from
the language together with the associated exit statement.

As a sort of compensation the flexibility of the while statement has been enhanced. Its extended
syntax is

WhileStatement = "WHILE" expression "DO" StatementSequence
 {“ELSIF” expression "DO" StatementSequence} "END".

As long as any of the Boolean expressions yields TRUE, the corresponding statement sequence
is executed. Repetition terminates, when all conditions are false. This is Dijkstra’s form. His
favourite example was a simple form of the Euclidean algorithm to compute the greatest common
divisor of m and n:

WHILE m > n DO m := m – n
ELSIF n > m DO n := n – m
END

2. The Case statement

The case statement performs the same function as the if statement. However, it is intended to
use a different technique of implementation, namely a single, indexed branch instead of a
cascade of conditional branches. This is sensible only if the cases are distinguished by a (mostly)
contiguous range of label values.

1. Labels are integers or character constants.
2. Labels form a range of values, starting with 0, like array indices.

3. The With statement

The With statement has been eliminated.

4. Specification of function procedures

The result of a function procedure was specified by a return statement. This form has the
unpleasant property that the return statement is syntactically disconnected from the function
procedure declaration, similar to the exit from the loop statements. It is therefore difficult to check,
whether or not a function procedure declaration specifies a result, or perhaps even several of

 2

them. Now the result specification becomes syntactically a part of the procedure declaration, and
vanishes as an independent statement form.

Old form: New form:

PROCEDURE F(x, y: INTEGER): INTEGER; PROCEDURE F(x, y: INTEGER): INTEGER;
BEGIN BEGIN
 IF x < y THEN RETURN y – x IF x < y THEN x := y – x
 ELSE RETURN x – y ELSE x := x – y
 END END ;
END F RETURN x END F

4. Assignment of arrays and records

Because assignments of arrays are typically more complex operations than simple assignments,
it was believed that this should be visible to a programmer. The standard procedure COPY(src,
dst) was therefore introduced. But now we handle array and record assignments just like other
assignments, writing dst := src, and discard the COPY procedure. The destination array must not
be shorter than the source array. This is in accordance with the assignment rule for strings and
with the compatibility of record types and their extensions.

5. Parameters

In Oberon, there are two kinds of parameters: Value and variable parameters. In the latter case
the formal parameter is considered as a local variable, and the actual parameter’s value is
assigned to it. This implies making a copy of that value, which is undesirable in the case of
structured types. In order to avoid the necessity of copying, we postulate that if a value parameter
is if a structured type, no assignments are possible. Hence, the parameter can be passed by a
reference like in the case of VAR parameters.

6. Read-only import of variables

According to the guidelines of modular programming and information hiding, it is recommended in
general to export and import constant objects only. These are constants, data types, and
procedures. Unfortunately, this sometimes makes it necessary to introduce a (exported)
procedure merely for the simple purpose of reading the value of a variable.

In Oberon, variables can be exported freely. In the spirit of exemplary modular programming, this
export is now – not abolished – but subject to read-only mode. The imported variable appears as
a constant.

7. Miscellaneous

- The types SHORTINT and LONGINT are removed, as well as the concept of type inclusion.

- The standard procedures and functions CAP, HALT, COPY, ASH, ENTIER, MIN, and MAX are
removed. (ASH is replaced by LSL, and ASR, ENTIER is renamed FLOOR, and HALT is
replaced by ASSERT(FALSE).

- New are the standard procedures ASSERT, PACK, and UNPK, and the functions LSL, ASR for
shifting, and FLOOR, and FLT for type transfers. ROT has been renamed ROR (right rotation
only).

- Applied to values of type SET, the unary minus denotes the set complement. The relations <=
and >= denote set inclusion.

- Pointers must point to records.

	Title
	Loop and While Statements
	Case Statement
	With Statement
	Function Procedures
	Arrays and Records
	Parameters
	Read-Only Import of Variables
	Miscellaneous

